Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Virol ; 97(3): e0012523, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36786631

RESUMO

Tacaribe virus (TCRV) is the prototype of New World mammarenaviruses, a group that includes several members that cause hemorrhagic fevers in humans. The TCRV genome comprises two RNA segments, named S (small) and L (large). Both genomic segments contain noncoding regions (NCRs) at their 5' and 3' ends. While the 5'- and 3'-terminal 19-nucleotide sequences are known to be essential for promoter function, the role of their neighboring internal noncoding region (iNCR) sequences remains poorly understood. To analyze the relevance of the 5' and 3' iNCRs in TCRV S RNA synthesis, mutant S-like minigenomes and miniantigenomes were generated. Using a minireplicon assay, Northern blotting, and reverse transcription-quantitative PCR, we demonstrated that the genomic 5' iNCR is specifically engaged in minigenome replication yet is not directly involved in minigenome transcription, and we showed that the S genome 3' iNCR is barely engaged in this process. Analysis of partial deletions and point mutations, as well as total or partial substitution of the 5' iNCR sequence, led us to conclude that the integrity of the whole genomic 5' iNCR is essential and that a local predicted secondary structure or RNA-RNA interactions between the 5' and 3' iNCRs are not strictly required for viral S RNA synthesis. Furthermore, we employed a TCRV reverse genetic approach to ask whether manipulation of the S genomic 5' iNCR sequence may be suitable for viral attenuation. We found that mutagenesis of the 5' promoter-proximal subregion slightly impacted recombinant TCRV virulence in vivo. IMPORTANCE The Mammarenavirus genus of the Arenaviridae family includes several members that cause severe hemorrhagic fevers associated with high morbidity and mortality rates, for which no FDA-approved vaccines and limited therapeutic resources are available. We provide evidence demonstrating the specific involvement of the TCRV S 5' noncoding sequence adjacent to the viral promoter in replication. In addition, we examined the relevance of this region in the context of an in vivo infection. Our findings provide insight into the mechanism through which this 5' viral RNA noncoding region assists the L polymerase for efficient viral S RNA synthesis. Also, these findings expand our understanding of the effect of genetic manipulation of New World mammarenavirus sequences aimed at the rational design of attenuated recombinant virus vaccine platforms.


Assuntos
Arenavirus do Novo Mundo , Genoma Viral , Replicação do RNA , Humanos , Arenavirus do Novo Mundo/genética , Arenavirus do Novo Mundo/patogenicidade , RNA Viral/genética , Replicação do RNA/genética , Mutagênese , Regiões Promotoras Genéticas/genética
2.
Viruses ; 14(5)2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35632615

RESUMO

SARS-CoV-2 variant detection relies on resource-intensive whole-genome sequencing methods. We sought to develop a scalable protocol for variant detection and surveillance in Paraguay, pairing rRT-PCR for spike mutations with Nanopore sequencing. A total of 201 acute-phase nasopharyngeal samples were included. Samples were positive for the SARS-CoV-2 N2 target and tested with the Spike SNP assay to detect mutations associated with the following variants: alpha (501Y), beta/gamma (417variant/484K/501Y), delta (452R/478K), and lambda (452Q/490S). Spike SNP calls were confirmed using amplicon (Sanger) sequencing and whole-genome (Nanopore) sequencing on a subset of samples with confirmed variant lineages. Samples had a mean N2 Ct of 20.8 (SD 5.6); 198/201 samples (98.5%) tested positive in the Spike SNP assay. The most common genotype was 417variant/484K/501Y, detected in 102/198 samples (51.5%), which was consistent with the P.1 lineage (gamma variant) in Paraguay. No mutations (K417 only) were found in 64/198 (32.3%), and K417/484K was identified in 22/198 (11.1%), consistent with P.2 (zeta). Seven samples (3.5%) tested positive for 452R without 478K, and one sample with genotype K417/501Y was confirmed as B.1.1.7 (alpha). The results were confirmed using Sanger sequencing in 181/181 samples, and variant calls were consistent with Nanopore sequencing in 29/29 samples. The Spike SNP assay could improve population-level surveillance for mutations associated with SARS-CoV-2 variants and inform the judicious use of sequencing resources.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiologia , Humanos , Paraguai/epidemiologia , SARS-CoV-2/genética
5.
Artigo em Espanhol | LILACS, BDNPAR | ID: biblio-1293251

RESUMO

Las mutaciones KDR en el gen del canal del sodio (VGSC) han sido ya detectadas en al menos 13 especies de mosquitos Anopheles en su mayoría especies de África, pero aún resta por determinar los cebadores específicos para la detección en especies de Latinoamérica. En nuestro país la especie Anopheles darlingi es el vector principal de la malaria, y el A. albitarsis, el vector secundario. Se emplearon muestras de mosquitos Anoheles de las especies A. strodei, A. albitarsis, A. fluminensis, A. evansae, A. nuneztovari, A. nyssorhynchela lutzi y A. oswaldoi capturadas en los departamentos de Caaguazú y Alto Paraná en Paraguay. Para la amplificación y secuenciación se usaron cebadores reportados para el gen VGSC de A. albimanus en Guatemala, que resultaron ser específicos solo para la especie A. strodei. La secuencia revela el codón TTA que codifica para una Leucina como la secuencia TTG, reportada para la versión susceptible en la posición L1014. El fragmento amplificado es de aproximadamente 225 pares de bases. A nuestro entender, esta es la primera caracterización del gen VGSC en mosquitos Anopheles del Paraguay y para la especie A. strodei


KDR mutations in the sodium channel gene (VGSC) have already been detected in at least 13 species of Anopheles mosquitoes, mostly African species, but the molecular techniques for detection in Latin American species have yet to be determined. In our country, Anopheles darlingi species is the main vector of Malaria, and A. albitarsis, the secondary vector. We used samples of Anoheles from the species A. strodei, A. albitarsis, A. fluminensis, A. evansae, A. nuneztovari, A. nyssorhynchela lutzi and A. oswaldoi collected at the departments of Caaguazú and Alto Paraná in Paraguay. For the amplification and sequentiation, primers reported for the VGSC gen of A. strodei in Guatemala were used and were specific only for A. strode in this case. The sequence revealed the TTA codon that codifies for a leucine as the TTG sequence, reported for the susceptible version at position L1014. The amplified fragment is approximately 225 base pairs. To our knowledge, this is the first characterization of the VGSC gene in Anopheles mosquitoes in Paraguay and for the species A. strodei


Assuntos
Animais , Reação em Cadeia da Polimerase , Anopheles , Canais de Sódio , Mosquitos Vetores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...